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We present a new method for approximating the partition function of 
2D Ising models using a transfer matrix of  order 2". For n = 3 0  our 
current program took about 20 s on a Sparc station to obtain four 
correct decimals in the top two eigenvalues and 5 rain for six correct 
decimals. Eigenvectors were computed at the same time. The tem- 
perature was within 3 %  of critical. The main idea is to force certain 
entries in vectors to have the same values and to find the crudest 
representation of this type that delivers the required accuracy. At no 
time does our program work with vectors with 2" entries. © 1994 
Academic Press, Inc. 

1. INTRODUCTION 

The Ising model was proposed to explain properties of 
ferromagnets but since then it has found application to 

topics in chemistry and biology as well as in physics. For  
any reader unfamiliar with the model an excellent introduc- 
tion targeted at a general audience is [ Cip87 ]. The remain- 
der of this section assumes some knowledge of the so-called 
transfer matrix. This paper presents a numerical method for 
computing properties of the 2D Ising model for given 
parameter  values such as magnetic field strength B, tem- 
perature T, and coupling constants J. There are two 
avenues leading to such calculations: combinatorial and 
algebraic. Our  method is in the second category which 
makes use of a transfer matrix M ,  associated with a semi- 
infinite helical grid of "spins" or "sites" with n of them on 
each circular band. One form of M ,  for n = 3 and n --- 4, with 
the field strength B normalized with respect to the coupling 
constant J is as follows: 
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where (with appropriate normalizations) 

a = e (2 -S)/T, b = e-S /r ,  c = e (-2 - s ) / r  

The attractive property of M,  is that it is a nonnegative 
irreducible matrix whose dominant eigenvalue (called the 
Perron root) is the wanted partition function per spin. Thus 
it is only necessary to approximate this eigenvalue to the 
desired accuracy although the associated eigenvectors are 
also useful in approximating quantities of physical interest. 
Moreover, M,  is exceedingly sparse: it has exactly two non- 
zero entries per row (and column) arranged in a regular pat- 
tern. There is only one difficulty: M n is of order 2" and we 
are interested in the case n - oo. We know of no calculations 
with n >/20 up until now. 

Our approach uses a finite family { 1=, ~, l} l= l oforthogonal  
indicial vectors and approximates the top two column and 
row eigenvectors of M ,  from the subspace spanned by ~9°,.l. 

Step O. Initialize l to 1. 

Step 1. Represent in compact form, the orthogonal 
projection P of the transfer matrix M,  onto the subspace 
span(~,l).  

Step 2. Compute the two largest eigenvalues and the 
associated column eigenvectors of P. These are, in a sense, 
the best approximations fi'om the given indicial subspace 
span(SCab, l). However they may not be good enough. 

Step 3. Evaltiate residual norms, condition numbers, 
and associated error bounds and estimates. If the estimates 
are satisfactory then compute the required properties of the 
model and stop. Otherwise return to Step 1 with the next 
member of each family, i.e., increase l by 1. 

Our goal is to creep up to the coarsest of our vector 
representations that permits approximations of the desired 
accuracy. This minimal representation, which is not known 
in advance, gave us the name for our approach. 

Note that the difficulty lies not in M,  itself but in the 
representation of vectors in R z". Indeed the special structure 
of M,  would permit evaluation of M , v  for any 
2"-dimensional vector v with great efficiency. However a 
procedure that costs 0(2")  may be too much when n is large 
and our central problem is the representation of vectors 
in R 2". 

Sparse vectors occur in sparse matrix work and Fuchs 
[ Fuc89 ], when applying the power method to M, ,  keeps 
only the largest 1000 entries of each vector. This device is 
satisfactory deep within the ferromagnetic region of the 
model. However, after studying the Perron vector in cases 
near the critical temperature we found that it contained 
almost no small entries. In different language, every con- 
figuration in the "spin" array contributes significantly to the 
partition function. 

As a substitute for sparsity we propose to limit the 

number of distinct values that can occur among a vector's 
components. We do this by means of a family of "indicial 
vectors." Here is a sketch of the idea. More details are given 
in Section 2. 

A vector in R 2" may be thought of as a function on 
{ 1, 2 .... ,2"}. What we call an indicial function is really a 
partition of this index set into disjoint subsets on each of 
which the vector is constant. Thus the vector takes on fewer 
than 2" distinct values, perhaps only a few million of them. 
This sort of vector recalls Lebesgue's approach to integra- 
tion via step functions. For  a given par t i t ionf the  set of all 
representable vectors forms a subspace ~CfofR 2". We bow to 
the influence of computer science and start counting at zero. 
If {Co ..... e2, 1} denotes the standard basis and if { 15, 93, 
214, 866} is one subset in the par t i t ionf  then els + e93 d- 

e214-k-e866 is one member of a natural orthogonal basis 
for ~ .  In other words, the natural basis vectors of R 2" a re  

aggregated according to f to produce an orthogonal basis 
of ~ .  An important feature of our approach is that these 
basis vectors are never represented explicitly in the 
computer. Careful index manipulation takes their place. 
Moreover, our choice o f f  yields a manageable representa- 
tion of the projection Ps of M,  onto ~ .  Ps is nonnegative 
and irreducible. Ps is not as sparse as M,  but we hold it in 
a compact form that permits the efficient formation of Ps w 
for appropriate w. 

There is some freedom in the choice of the family of f ' s .  
Our f ' s  are a compromise between physics and the very 
special structure of 3'/,. Details are given in Section 2. 

The next task is to find the Perron vectors of P s. Recall 
that the top two eigenvalues of M,  coalesce as the tem- 
perature becomes critical. We have used two approaches: 

(a) a block power method with a block size of 2, 

(b) a nonsymmetric Lanczos code. 

The details are given in [ PH92 ]. It turns out that it pays to 
compute the two largest eigenvalues together with their 
column and row eigenvectors. The reason that conventional 
techniques such as these are appropriate is that with our 
current indicial functions f ,  dim ~f = 0(n22 t-1 ) and so Ps is 
of modest order. In addition we form and compute similar 
quantities for Qs', the (orthogonal) projection of M*  onto 
an associated subspace ~ , .  The extra information from Qs' 
allows us to compute an approximate Perron row vector y* 
to match the Perron column vector x for Ps. Ps and Qs' 
share the same Perron root. Fortunately Qs' is diagonally 
similar to Ps and need not be represented explicitly. 

We would prefer to use the oblique projection of M,  onto 
the pair of subspaces ( ~ ,  ~ , )  but we have not yet found a 
convenient (sparse) representation because some of the 
canonical angles between ~ and ~ ,  equal n/2 and this fact 
complicates the representation. 

Associated with the vectors x ( P r x = x n )  and y* 
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(y*Qr=ny*) are vectors zme ~ and w ~ e ~ ,  that 
approximate the eigenvectors we seek. It is essential to be 
able to bound or estimate the accuracy of our approximate 
eigentriple (re s, z i, w~). 

Fortunately by using our special bases in ~ and ~ ,  
appropriately we can compute (exactly in exact arithmetic) 
the associated residual vectors 

rf:=Mnzf-zf~f, sf, :=M*wf,-wf, rcf, 

and 

cos: = w~ zH(llw/l l= I1=~11=) 

Although r f e R  2", J ' e R  2" we can accumulate I1@12 and 
IlJ' II: and wf during the computation of z i and w~ and thus 
avoid ever having to store them. This is a key feature of the 
efficiency of our method. From Ilrll, Ilsll, and co,we can com- 
pute error bounds and error estimates. This is discussed in 
[PH92] .  

It is likely that our error estimates indicate that zf, wf,, 
and zcy are not sufficiently accurate. In that case we pick the 
next indicial function f i n  our family so tha t f i s  a refinement 
o f f  and ~ c  ~ ,  dim 6~ ~ 2 dim ~ .  Then we repeat the cycle 
of approximations until the accuracy requirement is met or 
our resources are exhausted. This is not an iterative method 
because, in a finite number of steps, the indicial function 
becomes the identity. 

By creeping up to adequate approximations from below 
we ensure that we end up with the coarsest indicial function 
that meets the given tolerance. In this way do we achieve the 
minimal representation, from our family, that gives our 
method its name. It is worth repeating that at no time in the 
cycle do we need to store a vector with 2" components. 

Quantities of interest are usually partial derivatives of 
the partition function. If we used differences to estimate 
derivatives that would sharply increase the required 
accuracy of our approximations. Fortunately Gartenhaus 
[ Gar.83 ] and Fuchs [ Fuc89 ] have shown that some of the 
quantities of interest may be expressed in terms ofz  and w* 
and so there is no need to use differences. This increases the 
scope of our approach significantly. 

2. P R O J E C T I O N S  O F  D U O D I A G O N A L  M A T R I C E S  

Figures 3 and 4 show that the Perron eigenvector of M 8 
may be approximated quite well by vectors in which certain 
positions are constrained to carry the same value. The 
challenge is, of course, to specify in general the right 
positions. Our approach makes heavy use of the binary 
representation of the numbers 0, 1, ..., 2 " - 1 .  In particular 
we always use n-bits in a representation. Thus the positions 
in a 2"-vector are indexed by the bit strings 
{00. . .  0.00 ... 01 ... 11 ... 11 }. If we think of these strings as 

# l ' s  :# tralisilions indicial sets indie.ial vectors 

0 0 {oooo}  ~-o 
I 1 {1000.0001} ~ S + ( l  

1 2 {OlO0,OOlO} (4 + (2 

2 1 {Ii00.0011} ~12 +~3 
2 2 {I001.0110} ~9 + ~-6 

2 3 {i010,0101} ~(i + ~'5 

3 1 {III0,0111} ~14 + ( 7  

3 2 {Ii01. I011} (13 + ~ll 

4 0 { i i i i}  ~15 

FIG. 1. Indicial sets and basis vectors for bit strings of length n = 4. 

configurations of a 1D Ising model then we obtain equal 
contributions to the (total) partition function from all con- 
figurations (strings) which have the same k (the number of 
l's) and t (the number of transitions). Thus we can group 
the bit strings by the values of (k, t). For  n = 4 this partition 
is shown in Fig. 1. 

The approximation is not bad at the visual level but may 
well not be adequate. We need a systematic way to refine the 
partition induced by k and t. Our choice may not be 
optimal but it has the practical virtue of exploiting the 
duodiagonal structure of M,. We use the last l bits in the 
string, for l = 1, 2, ..., as a refining parameter. For large 
enough l the original index set is recovered. The partition 
for n = 5, l = 1 is shown in Fig. 2. In each figure the last 
column lists a set of orthogonal vectors in R 2" which we call 

lraJlilig bit # l ' s  # transilioils illdicial sets indicial vectors 

o 0 0 {ooooo} ~o 
o 1 l {10000} ~(~ 
0 1 2 {00010.00100.01000} ~2 + a4 + ~ 

o 2 1 {11000} ~24 

0 2 2 {00110.01100} ~ + ~12 

0 2 :3 {10010. 10100} ~18 + ~2o 

0 2 4 {01010} ~1o 

0 3 1 {11100} ~:28 

0 3 2 {01110} ~14 

0 3 3 {10110, 11010} ~22 + c26 

0 4 l {iiii0} ~o 

1 i i {ooool }  ~, 
1 2 I {00011} ~3 

1 2 2 {10001} ~17 

1 2 3 {00101,01001} ~5 + e9 

1 3 1 {00111} ~r 
1 3 2 {I0011, II001} ~19 + e2s 

1 3 3 {01011, 01101} ~11 "~ el3 

1 3 4 {10101} e2, 

1 4 1 {01111} el5 

1 4 2 {10111,11011,11101} e23 + e27 + ~29 

1 5 0 {11111} e31 

FIG. 2. Indicial sets and basis vectors for n = 5 and 1 = 1. 
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t,1,, PlJI,,J,,,, 
F I G .  3. D o m i n a n t  c o l u m n  e igenvec tor  o f  M , ,  n = 8, B = 0.0001, T = 1.6. 
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F I G .  4. D o m i n a n t  co lumn  eigenv¢ctor  of Mn, n = 8, B = 0.0001, T = 2.2. 
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Sg,,I: n = 4 ,  l = 0  for Fig. 1; n = 5 ,  1=1 for Fig. 2. A careful 
analysis (see [Hen91 ] ) shows the cardinality of this set, 

( ( n - l +  l ) ( n - l ) ) < n 2 2 1 - a  
1~,11=21 1 -~ 2 

Our method's utility depends on obtaining adequate 
accuracy for small values of/. However, defining ~ , l  is not 
enough. We need to derive the projection P,C,l of M,  onto 
span(~a)  without actually using the indicial vectors 
exhibited in the figures above. Instead, by analysis, we 
determine a priori the positions and values of the nonzeros 
in P,C r 

The duodiagonal form of M n is essential to the analysis. 
The key fact is that the action of M,  on any vector in 5e,,l 
can be expressed as a linear combination of either two or 
four vectors in ~ , l+  1. To illustrate the idea we show how to 
obtain a column of p C  for n = 5, l = 1. 

Let o9 denote the last l bits of an n-string and let xo~,k,t 
denote the indicial vector specified by o9, k, and t, e.g., 
{00010, 00100, 01000} is the indicial set with k = 1, t = 2, 
o9=0 (with n = 5 ,  l = l ) .  Thus Xo, L z = e E + e 4 + e s .  The 
duodiagonal structure requires that the nonzeros in 
columnj  occur in rows 2j rood 2" and (2j + 1 ) rood 2n: 

M,  Xo, I,2 = Mne2 + Mne 4 + M ,  e8 

= (ae4 + bes) + (ae8 + be9) + (be l6  + ce17 ) 

= a(e4 + e8) + b(e5 + e9) + bel6 + cel7 

= aXoo, l,2 + bx01,2,3 + bxoo, l,1 + cx01,2,2. 

See the matrices illustrated in the Introduction for the 
meaning of a, b, and c. Next we must determine the triples 
(co', k', t') such that the inner product 

(xo~,,k, ,,, m . x ~ , . k , , )  

does not vanish. We return to our example above and read 
off the results because all indicial vectors are pairwise 
orthogonal: 

('X00,1,2 , MnXo, 1,2) = a  Ilxoo, m,2 II 2 = 2 a  

( X 0 1 , 1 , 2  , MnXo,  l ,2)  = b 11Xoa,~,2 II 2 = 2b 

(Xoo, l,2, MnXo, l,2) = b Ilxoo, l,1 II 2 = b 

( x o l , 2 , 2 ,  MnXo, l ,2)  = c [IXol,2,2 II 2 = c 

All other entries in column (0, 1, 2) vanish. Since the indicial 
vectors are not normalized a diagonal scaling is necessary. 
The result is that the four nonzeros in column (0, 1, 2) of 
pCs, 1 are just a, b, b, c and they occur in the indicated rows. 
Thus P is easily stored, in compact form, in a rectangular 
array as discussed in the next section. Some other columns 
of P will have only two nonzeros. In thef general case the 

T A B L E I  

Combinatofialpropertiesofsuffix-basedindicialsets 

2" IG,2I max II~,,k,,I IG,4[ max II~,k,,I 
m,k,t co,k,t 
I~ol =2 I~J1-4 

10 1024 148 20 352 6 
20 1.05 x 106 688 8820 2192 2520 
30 1.07 x 109 1628 5.95 x 106 5632 1.59 x 106 

precise form of P,C t is not easy to determine. However, the 
analysis has been done and the details may be found in 
[Hen92] .  The result is that P may be computed with 
arithmetic effort proportional to JSen, t[ and with storage 
proportional to 15e,,l+~ 1. By means of this combinatorial 
analysis the largest two eigenvalues of M,  may be 
approximated by the largest two eigenvalues of p C  and this 
can be tackled by more conventional techniques. Table I is 
a sample of the sizes of the sets 5a~.l and the maximal number 
of ones in an indicial vector x = x~o,k,,. 

3. IMPLEMENTATION ISSUES 

We discuss the data structures used for indicial sets and 
indicial vectors x~o,k,t as well as efficient algorithms for 
manipulating coefficient vectors. 

3.1. Representation of  Vectors 

In order to turn the set 5an.l of indicial vectors xo~,k,, into 
a basis a total ordering on the index triples (o9, k, t) with 
[co] = l is needed. Recall that o9 is the /-bit suffix of an 
n-string. Such a triple is legitimate if the corresponding 
index set is nonempty (or, equivalently, if xo~,k,, is a vector 
in 5e~, 3. The ordering on legitimate triples uses the number 
v(og) of which o9 is the binary representation, 

(co, k, t) "<l (o9', k', t') 

if and only if, 

(a) v(og) < v(og'), or 

(b) v(og) = v(og') and k < k', or 

(c) v(co)=v(og'), k = k '  and t< t ' .  

We use q~(og, k, t) for the ranking of (co, k, t) under this 
ordering, i.e., • maps (o9, k, t) into a nonnegative integer. 

Let X denote the matrix whose columns are the vectors in 
~ . l  in the prescribed order. Then any vector g in span(~, l )  
may be written as 

g =  X~,, 

where ~ is the suffix-based coefficient vector ofg. Note that 
g ~ R 2" while ~ ~ R I~,jI. 

It is tempting to use (o9, k, t) as an index so that any 
could be held in a 3D array of real numbers. The trouble 
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TABLE II  

R e s u l t s  for n = 10, B = 0.0001, T =  1.6 ( T r u e  E i g e n v a l u e  = 3 .5189840135)  

2 6 3  

l Approximation GRQ Dim Time(s )  

2 3.5189867614 (2.7 x 10 6) 3.5189822267 ( - 1 . 8  × 10 - 6 )  148 0.8 
3 3.5189842995 (2.9 x 10 -7) 3.5189837782 ( - 2 . 4  x 10 -7) 232 1.3 
4 3.5189839756 ( - 3 . 8  x 10 -8) 3.5189839519 ( - 6 . 2  x 10 -8) 352 2.0 

TABLE III 

R e s u l t s  for n = 10, B = 0.0001, T =  2.2 ( T r u e  E i g e n v a l u e  = 2 .5922922453)  

l Approximation GRQ Dim Time(s )  

2 2.5925207946 (2.3 × 10 - 4 )  2.5922407533 ( - 1 . 5  x 10 -5) 148 0.8 
3 2.5923360346 (4.4x 10 -5) 2.5921803640 ( - 1 . 1  x 10 4) 232 1.5 
4 2.5922660120 ( - 2 . 6  x 10 5) 2.5922266644 ( - 6 . 6  x 10 - s )  352 2.4 

TABLE IV 

Resu l t s  for  n = 20, B = 0.0001, T =  1.6 

I Approximation GR Q Approximat ion-GRQ Dim Time (s) 

2 3.5189802741 3.5189759878 
3 3.5189780552 3.5189731775 
4 3.5189775223 3.5189777525 
5 3.5189776100 3.5189775601 
6 3.5189776241 3.5189776145 
7 3.5189776408 3.5189777184 

TABLE VI 

Resu l t s  for  n = 30, B = 0.0001, T =  1.6 

l Approximation GRQ Approximat ion-GRQ Dim Time (s) 

4.3 x 10 - 6  688 5.2 2 3.5189798036 3.5189277829 5.2× 10 -5 1628 11.8 
4.9 x 10 -6 1232 8.3 3 3.5187421095 3.5187271685 1.5 x 10 -5 3032 16.6 

--2.3 x 10 - 7  2192 17.0 4 3.5189765962 3.5189734194 3.2× 10 -6 5632 50.9 
5.0 x 10 -8 3872 35.7 5 3.5189754869 3.5189630814 1.2x 10 -5 10432 101.5 
9.6 x 10-9 6784 71.7 6 3.5189767326 3.5189765436 1.9 × 10 - 7  19264 213.3 

- 7 . 8  × 10- s  11776 132.0 7 3.5189774542 3.5189775232 - 6 . 9  × 10 -8 35456 472.3 

TABLE V 

Results~rn=20, B=O.OOO1, T=2.2 

l Approximation GR Q Approximat ion-GRQ Dim Time (s) 

2 2.5875164697 2.5873011057 
3 2.5873559732 2.5871852423 
4 2.5872924943 2.5872247888 
5 2.5868850538 2.5869016769 
6 2.5872576018 2.5872809894 
7 2.5872475229 2.5872981335 

2.2 x 10-4 688 6.8 
1.7 × 10-4 1232 5.2 

- 6 . 8  x 10-5 2192 11.2 
- 1.7 × 10-5 3872 17.3 
- 2 . 3  x 10 -5 6784 80.9 
-5 .1  x 10 -5 11776 76.7 

TABLE VII 

Results~rn=30, B=O.OOO1, T=2.2 

l Approximation GRQ Approximat ion-GRQ Dim Time (s) 

2 2.5865877396 2.5864247904 
3 2.5864495960 2.5863367635 
4 2.5863989389 2.5863409514 
5 2.5863738510 2.5863429058 
6 2.5863633205 2.5863620747 
7 2.5863635130 2.5863831549 

1.6x 10-4 1628 21.1 
1.1x 10 - 4  3032 17.5 
5.8x 10-5 5632 38.3 
3.1 x 10 -5 10432 64.3 
1.2x 10 -6 19264 139.1 

- 2 . 0  x 10 -5 35456 316.5 
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with this scheme is that there are holes (illegitimate triples) 
and so it is a bit wasteful of storage and, even worse, every 
access to the array must check whether the index is 
legitimate. Instead we simply map the legitimate triples onto 
{0, 1, ..., I~ , , I -  1} using ~. 

The first task is to obtain • given (co, k, t). The definition 
of <~l shows that t plays a minor role and so we only need 
a 2D array, based on v(co) and k, which we call index. The 
needed entries in the 21 × (n + 1) array index may be com- 
puted initially. Then 

¢~(co, k, t) = index[v(co)] [k ]  + t. 

The next task is to represent the inverse mapping; given a 
value for • find co, k, and t. This is easily accomplished with 
three 1D arrays of length I~,zl, one for each of co, k, and t. 
These are initialized before the calculations begin. 

3.2. Advantage of  the Indexing Scheme 

When computing the dominant eigenvectors of a projec- 
tion matrix the array ~ is treated as a conventional vector in 
R t~",~t but when we need to know an entry of g =  X~ in R 2" 

we proceed as follows. To find g(i) first obtain/z, the n-bit 
binary representation of/, together with its /-bit suffix co 
(the last l bits of p). Next compute k and t from p. Finally 
loop up ~(co, k, t) as described above. Then 

g(i) = ~,(~(co, k, t)). 

It is these simple bit manipulations and table look-ups that 
enable us to avoid the use of an array with 2 n entries. 

3.3. The Projection Matrix 

As mentioned e a r l i e r  PnC, l has at most four nonzeros per 
row and so it contains somewhat less than 4 I~,tl nonzeros. 
We represent P as a sequence of packed columns in a 1D 
array col-proj. In addition two index arrays col and row are 
needed; the ith nonzero is in position (row(i), col(i)) and 
has the value col-proj(i). The vector P~v is formed by 
taking the linear combination of P's columns with coef- 
ficients given by v. 

3.4. Application of  the Transfer Matrix to Approximate 
Eigenvectors 

Although the use of suffixes co to refine our model has no 
justification from physics it does have the virtue that the 

action of M,  on vectors in span(Sa,.t) can be computed 
exactly (modulo round off error). Consequently the norms 
of residual vectors may be computed without storing arrays 
of length 2". The reason, briefly, is that M,  maps span(Se~a ) 
into span(Sea, t+ 1). Details are given in [-PH92]. 

3.5. Extracting Information from the Projections 

Even though I ~ , t l ~ 2 "  it is essential to use a fairly 
efficient method to compute the two dominant eigenvectors 
of P,C l and the two dominant row eigenvectors of P,~,I 

c (which is diagonally similar to P, , t  and so it does not need 
separate treatment). Although we only want the dominant 
eigenvector we consider the calculation of two eigenvectors 
to be essential for efficiency when the temperature in the 
Ising model is near critical and there is less and less separa- 
tion between the two largest eigenvalues. 

We have tried two methods: (a) the block power method 
with block size 2 (called subspace iteration by numerical 
analysts and structural engineers); (b) the unsymmetric 
Lanczos algorithm. 

A block Lanczos algorithm with block size 2 would 
probably be more efficient but we have not developed a 
code for that yet. Indeed the unsymmetric Lanczos code is 
not yet a standard method but in our experiments it 
becomes increasingly better than the block power method 
as n increases beyond 15. More details about the implemen- 
tation and our error estimates are given in [PH92] .  

4. NUMERICAL RESULTS 

Here are the results from a preliminary code using the 
nonsymmetric Lanczos algorithm. For the hardest case, 
n = 30 and temperature within 3 % of critical, it took about 
20 s on a Sparc station to obtain the partition function to 
three decimal digits and about 5 min to obtain five decimal 
digits. In Tables II-VII, G RQ  is the generalized Rayleigh 
quotient y*Mnx/y*x. The temperature T =  1.6 is deep 
within the ferromagnetic region; T = 2.2 is within 3 % of the 
critical temperature. 
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